Rudi Mathematici

$$
x^{4}-8176 x^{3}+25065656 x^{2}-34150792256 x+17446960811280=0
$$

- James R. Martino

January

18° USAMO (1989) - 5

Let \boldsymbol{u} and \boldsymbol{v} real numbers such that:
$\sum_{i=1}^{8} u^{i}+10 * u^{9}=$
$=\sum_{i=1}^{10} v^{i}+10 * v^{11}=8$
Determine -with proof- which of the two numbers - \boldsymbol{u} or \boldsymbol{v} - is larger

There are only two types of people in the world: those that don't do math and those that take care of them.

A mathematician confided
That a Moebius strip is one-sided
You' get quite a laugh
If you cut it in half,
For it stay in one piece when divided.

A mathematician's reputation rests on the number of bad proofs he has given.

Abram BESICOVICH
If you are afraid of something, measure it, and you will realize it is a mere triple

Renato CACCIOPPOLI

Someone told me that each equation I included in a book would halve the sales.

Stephen HAWKING
God not only plays dice. He also sometimes throws the dice were they cannot be seen.

Stephen HAWKING
"When I use a word," Humpty Dumpty said, in a rather scornful tone, "it means just what I choose it to mean, neither more or less". "The question is," said Alice, "wether you can make words mean so many different things"."The question is," said Humpty Dumpty, "wich is to be master; that's all".

Charles DOGSON
When we ask advice, we are usually looking for an accomplice.

Joseph-Louis LAGRANGE
The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of mathematics

Isaac NEWTON

Rudi Mathematici

February

5	1	F	(1900) John Charles BURKILL
	2	S	(1522) Lodovico FERRARI
	3	S	(1893) Gaston Maurice JULIA
6	4	M	(1905) Eric Cristopher ZEEMAN
	5	T	(1757) Jean Marie Constant DUHAMEL
	6	W	(1612) Antoine ARNAULD (1695) Nicolaus (II) BERNOULLI
	7	T	(1877) Godfried Harold HARDY (1883) Eric Temple BELL
	8	F	(1700) Daniel BERNOULLI (1875) Francis Ysidro EDGEWORTH
	9	S	(1775) Farkas Wolfgang BOLYAI (1907) Harod Scott MacDonald COXETER
	10	S	(1747) Aida YASUAKI
7	11	M	(1800) William Henry Fox TALBOT (1839) Josiah Willard GIBBS (1915) Richard Wesley HAMMING
	12	T	(1914) Hanna CAEMMERER NEUMANN
	13	W	(1805) Johann Peter Gustav Lejeune DIRICHLET
	14	T	(1468) Johann WERNER (1849) Hermann HANKEL (1896) Edward Artur MILNE
		F	(1564) Galileo GALILEI (1861) Alfred North WHITEHEAD
	16	S	(1822) Francis GALTON (1853) Georgorio RICCI-CURBASTRO (1903) Beniamino SEGRE
	17	S	(1890) Sir Ronald Aymler FISHER (1891) Adolf Abraham Halevi FRAENKEL
8	18	M	(1404) Leon Battista ALBERTI
	19	T	(1473) Nicolaus COPERNICUS
	20	W	(1844) Ludwig BOLTZMANN
	21	T	(1591) Girard DESARGUES (1915) Evgenni Michailovitch LIFSHITZ
	22	F	(1903) Frank Plumpton RAMSEY
	23	S	(1583) Jean-Baptiste MORIN (1951) Shigefumi MORI
	24	S	(1871) Felix BERNSTEIN
9	25	M	(1827) Henry WATSON
	26	T	(1786) Dominique Francois Jean ARAGO
	27	W	(1881) Luitzen Egbertus Jan BROUWER
	28		(1735) Alexandre Theophile VANDERMONDE
			(1860) Herman HOLLERITH

19° USAMO (1990) - 4

Find -with proof- the number of positive integers whose base- \boldsymbol{n} representation consists of distinct digits with the property that -except for the leftmost digit- every digit differ by ± 1 from some digit further to the left (Your answer should be an explicit function of \boldsymbol{n} in the simplest form).
Philosophy is a game with objectives and no rules.
Mathematics is a game with rules and no objectives

Consider the pitiful plight
Of a runner who wasn't too bright
But he sprinted so fast,
That he vanished at last
By red-shifting himself out of sight

Common sense is not really so common.
Antoine ARNAUD
It would be better for the true physics if there were no mathematicians on hearth.

Daniel BERNOULLI
A mathematician can will recognize Cauchy, Gauss, Jacobi, or Helmohltz after reading a few pages, just as musician recognize, from the first few bars, Mozart, Beethoven or Schubert.

Ludwig BOLTZMANN
Whenever you can, count.
Francis GALTON
One of the principle objects of research in my department of knowledge is to find the point of view from which the subject appears in the greatest simplicity.

Willard GIBBS
I am interested in mathematics only as a creative art.

Godfried HARDY

March

18° USAMO (1990) - 5
 An acute-angle triangle $A B C$ is given in the plane. The circle with diameter $\boldsymbol{A B}$ intersects altitude $\boldsymbol{C C}$ and its extension at points \boldsymbol{M} and \boldsymbol{N} -and and the circle with diameter $\boldsymbol{A C}$ intersects altitude $\boldsymbol{B B}{ }^{`}$ and its extension at points \boldsymbol{P} and \boldsymbol{Q}. Prove that $\boldsymbol{M}, \boldsymbol{N}, \boldsymbol{P}$ and \boldsymbol{Q} lie on a common circle.

Algebraic symbols are used when you do not know what you are talking about.

A Calculus student upset as could be
That his antiderivative just didn't agree
With the answer in the book
Even after a second look
Indeed it was off, but by a constant C

Don't worry about people stealing your ideas. If your ideas are any good, you'll have to ram them down people's throats.

Howard AIKEN
A mathematician is a person who can find analogies between theorems; a better mathematician is one who can see analogies between proofs and the best mathematician can notice analogies between theories. One can imagine that the ultimate mathematician is one who can see analogies between analogies.

Stefan BANACH
The essence of mathematics lies in its freedom.
Georg CANTOR
Perfect numbers like perfect men are very rare.
Rene` DESCARTES
It is not enough to have a good mind. The main thing is to use it well.

Rene` DESCARTES
I don't berlieve in mathematics.
Albert EINSTEIN
The search for truth is more precious than its possession.

Albert EINSTEIN
A mathematician is a machine for turning coffe into theorems.

Paul ERDÖS

Rudi Mathematici

April

20° USAMO (1991) - 2

For any nonempty set \boldsymbol{S} of numbers, let $\sigma(S)$ and $\pi(S)$ denote the sum and product (respectively) of the elements of \boldsymbol{S}. Prove that:
$\sum \frac{\sigma(S)}{\pi(S)}=\left(n^{2}+2 n\right)-(n+1) \sum_{i=1}^{n} \frac{1}{i}$
Where " Σ " denotes a sum involving all nonempty subsets \boldsymbol{S} of $\{1,2,3, \ldots, n\}$

The law of the excluded middle either rules or does not rule, O.K.?

If you integrate zee squared dee zee
From one to the cube root of three
Multiplied by cosine
Of three pi over nine
You get natural log of the cube root of e

Point set topology is a disease from which the uman race will soon recover.

Henri POINCARE`

The notion of a set is too vague for the continuum hypothesis to have a positive or negative answer.

> Paul COHEN
[upon losing the use of his right eye]
Now I will have less distraction
Leonhard EULER
The total number of Dirichlet's publications is not large: jewels are not weighed on a grocery store.

Carl Friedrich GAUSS
I don't believe in natural science
Kurt GODEL
There is more in Mersenne than in all the universities together

Thomas HOBBES
Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions.

Felix KLEIN
The facrt that the author thinks slowly is not serious, but the fact that it publishes faster than he thinks is inexcusable

Wolfgang PAULI

Rudi Mathematici

20° USAMO (1991) - 3

Show that, for any fixed integer $n \geq 1$, the sequence

$$
2,2^{2}, 2^{2^{2}}, \ldots a_{k}=2^{a_{k-1}} \quad(\bmod n)
$$

is eventually constant.
Engineers think that equations approximate the real world.
Physicists think that the real world approximates equations.
Mathematicians are unable to make the connection ...

A mathematician named Klein
Thought the Mobius band was divine
Said he, "If you glue
The edges of two
You get a weird bottle like mine"

A quantity wich is increased or decreased by an infinitely small quantity is neither increased or decreased.

Johann BERNOULLI
To isolate mathematics from the practical demands of the sciences is to invite the sterility of a cow shut away from the bulls.

Lipa BERS
Where did we get Schrodinger's equation from? It's not possible to derive it from anything you know. It came out of the mind of Schrodinger.

Richard FEYNMAN
Nature is not embarassed by difficulties of analysis.

Augustin FRESNEL
This series is divergent therefore we may be able to do something with it.

Oliver HEAVISIDE

The whole problem with the world is that fools and fanatics are always so certain of themselves, but wiser people so full of doubts.

Bertrand RUSSELL

Rudi Mathematici

June

22	1	S	(1796) Sadi Leonard Nicolas CARNOT (1851) Edward Bailey ELLIOTT (1899) Edward Charles TITCHMARSH
	2	S	(1895) Tibor RADO`
23	3	M	(1659) David GREGORY
	4	T	(1809) John Henry PRATT
	5	W	(1814) Pierre LAurent WANTZEL (1819) John Couch ADAMS
	6	T	(1436) Johann Muller REGIOMONTANUS (1857) Aleksandr Michailovitch LYAPUNOV (1906) Max ZORN
	7	F	(1863) Edward Burr VAN VLECK
	8	S	(1625) Giovanni Domenico CASSINI (1858) Charlotte Angas SCOTT (1860) Alicia Boole STOTT
	9	S	(1885) John Edensor LITTLEWOOD
24	10	M	(940) Mohammad ABU'L WAFA Al-Buzjani (1887) Vladimir Ivanovich SMIRNOV
	11	T	(1937) David Bryant MUMFORD
	12	W	(1888) Zygmunt JANYSZEWSKI
	13	T	(1831) James Clerk MAXWELL (1876) William Sealey GOSSET (Student) (1928) John Forbes NASH
	14	F	(1736) Charles Augustin de COULOMB (1856) Andrei Andreyevich MARKOV (1903) Alonzo CHURCH
	15	S	(1640) Bernard LAMY (1894) Nikolai Gregorievich CHEBOTARYOV
	16	S	(1915) John Wilder TUKEY
25	17	M	(1898) Maurits Cornelius ESCHER
	18	T	(1858) Andrew Russell FORSYTH (1884) Charles Ernest WEATHERBURN
	19	W	(1623) Blaise PASCAL (1902) Wallace John ECKERT
	20	T	(1873) Alfred LOEWY
	21	F	(1781) Simeon Denis POISSON (1828) Giuseppe BRUNO
	22	S	(1860) Mario PIERI (1864) Hermann MINKOWSKY (1910) Konrad ZUSE
	23	S	(1912) Alan Mathison TURING
26	24	M	(1880) Oswald VEBLEN
	25	T	(1908) William Van Orman QUINE
	26	W	(1824) William THOMPSON, Lord Kelvin (1918) Yudell Leo LUKE
	27	T	(1806) Augustus DE MORGAN
	28	F	(1875) Henri Leon LEBESGUE
	29	S	(1888) Aleksandr Aleksandrovich FRIEDMANN
	30	S	(1791) Felix SAVART

20° USAMO (1991) - 4

Let \boldsymbol{m} and \boldsymbol{n} positive integers, and let
$a=\frac{m^{m+1}+n^{n+1}}{m^{m}+n^{n}}$
Prove that
$a^{m}+a^{n} \geq m^{m}+n^{n}$.
Theorem: All positive integers are interesting. Proof: Assume the contrary. Then there is a lowest non-interesting positive integer. But, hey, that's pretty interesting! A contradiction. QED

A challenge for many long ages
Had baffled the savants and sages.
Yet at last came the light:
Seems old Fermat was right:
To the margin add 200 pages

In my opinion, a mathematician, in so far as he is a mathematician, need not preoccupy himself with philosophy... An opinion, moreover, wich has been expressed by many philosophers...

Henri LEBESGUE
Try a hard problem. You may not solve it, but you will prove something else.

John E. LITTLEWOOD
The numbers may be said to rule the whole world of quantity, and the four rules of arithmetic may be regarded as the complete equipment of the mathematician.

James Clerk MAXWELL
The mathematical education of Albert Einstein was not very solid, wich I am in good position to evaluate since he obtained it from me in Zurich some time ago.

Hermann MINKOWSKY

Rudi Mathematici

July

	7		M		(1643) Gottfried Wilhelm von LEIBNITZ (1788) Jean Victor PONCELET
		2			(1820) William John Racquorn RANKINE (1852) William BURNSIDE
		3	N		(1807) Ernest Jean Philippe Fauque de JONQUIERE (1897) Jesse DOUGLAS
		4			(1906) Daniel Edwin RUTHERFORD (1917) Michail Samuilovich LIVSIC
		5			
		6	S		(1849) Alfred Bray KEMPE
		7	S		(1816) Johann Rudolf WOLF (1906) William FELLER (1922) Vladimir Aleksandrovich MARCHENKO
	8	8	M		(1760) Christian KRAMP
		9	T		(1845) George Howard DARWIN
		10	W		(1862) Roger COTES (1868) Oliver Dimon KELLOGG
		11	T		(1857) Sir Joseph LARMOR (1890) Giacomo ALBANESE
		12	F		(1875) Ernest Sigismund FISCHER (1895) Richard BUCKMINSTER FULLER
		13	S		(1527) John DEE (1741) Karl Fiedrich HINDENBURG
		14	S		
29		15	M		(1865) Wilhelm WIRTINGER (1906) Adolph Andrej Pavlovich YUSHKEVICH
		16	T		(1678) Jakob HERMANN (1903) Irmoard FLUGGE-LOTZ
		17	W		(1831) Victor Mayer Amedee` MANNHEIM (1837) Wilhelm LEXIS
		18	T		(1013) Hermann von REICHENAU (1635) Robert HOOKE (1853) Hendrich Antoon LORENTZ
		19	F		(1768) Francois Joseph SERVOIS
		20	S		
		21	S		(1620) Jean PICARD (1848) Emil WEYR (1849) Robert Simpson WOODWARD
30		22	M		(1784) Friedrich Wilhelm BESSEL
		23	T		(1775) Etienne Louis MALUS (1854) Ivan SLEZYNSKY
		24	W		(1851) Friedrich Herman SCHOTTKY (1871) Paul EPSTEIN (1923) Christine Mary HAMILL
		25	T		(1808) Johann Benedict LISTING
		26	F		(1903) Kurt MAHLER
		27	S		(1667) Johann BERNOULLI (1801) George Biddel AIRY (1848) Lorand Baron von EOTVOS (1871) Ernst Friedrich Ferdinand ZERMELO
		28	S		(1954) Gerd FALTINGS
31		29	M		
		30	T		
		31	W		(1704) Gabriel CRAMER (1712) Johann Samuel KOENIG

21° USAMO (1992) - 1

Find, as function of \boldsymbol{n}, the sum of the digits of:

$$
9 * 99 * 9999 * \cdots *\left(10^{2 n}-1\right)
$$

where each factor has twice as many digitsas the previous one.

You know how dumb the average guy is? Well, by definition, half of them are even dumber than that.

Points
Have no part or joints
How then can they combine
To form a line?

Probability is a mathematical discipline whose aims are akin to those, for example, of geometry of analytical mechanics. In each field we must carefully distinguish three aspects of the theory:
(a) the formal logical content
(b) the intuitive background
(c) the applications.

The character, and the charm, of the whole structure cannot be appreciated without considering all three aspects in their proper relation.

William FELLER
When working on a problem, I never think about beauty; I think only of how to solve the problem. But when I have finished, if the solution is not beautyful, I know that is wrong.

Richard BUCKMINSTER FULLER

The art of discovering the causes of phenomena, or true hypothesis, is like the art of decyphering, in which an ingenious conjecture greatly shortens the road.

Gottfried LEIBNITZ
[The infinitesimals] neither have nor can have theory; in practise it is a dangerous instrument in the hand of beginners. Anticipating the judgement of posterity, I would predict that this method will be accused one day, and rightly, of having retarded the progress of the mathematical sciences.

François SERVOIS

Rudi Mathematici

August

3		T	(1861) Ivar Otto BENDIXSON (1881) Otto TOEPLITZ
	2	F	(1856) Ferdinand RUDIO (1902) Mina Spiegel REES
	3	S	(1914) Mark KAC
	4	S	(1805) Sir William Rowan HAMILTON (1838) John VENN
32	5	M	(1802) Niels Henrik ABEL
	6	T	(1638) Nicolas MALEBRANCHE (1741) John WILSON
	7	W	(1868) Ladislaus Josephowitsch BORTKIEWITZ
	8	T	(1902) Paul Adrien Maurice DIRAC
	9	F	(1537) Francesco BAROZZI (Franciscus Barocius)
	10	S	(1602) Gilles Personne de ROBERVAL
	11	S	(1730) Charles BOSSUT (1842) Enrico D`OVIDIO \end{tabular} \\ \hline \multirow[t]{7}{*}{33} & 12 & M & \begin{tabular}{l} (1882) Jules Antoine RICHARD \\ (1887) Erwin Rudolf Josef Alexander SCHRODINGER \end{tabular} \\ \hline & 13 & T & (1625) Erasmus BARTHOLIN (1819) George Gabriel STOKES (1861) Cesare BURALI-FORTI \\ \hline & 14 & W & \begin{tabular}{l} (1530) Giovanni Battista BENEDETTI \\ (1842) Jean Gaston DARBOUX \\ (1865) Guido CASTELNUOVO \\ (1866) Charles Gustave Nicolas de la VALLEE` POUSSIN
	15	T	(1863) Aleksei Nikolaevich KRYLOV (1892) Louis Pierre Victor duc de BROGLIE (1901) Petr Sergeevich NOVIKOV
	16	F	(12773) Louis Beniamin FRANCOEUR (1821) Arthur CAYLEY
	17	S	(1601) Pierre de FERMAT
	18	S	(1685) Brook TAYLOR
34	19	M	(1646) John FLAMSTEED (1739) Georg Simon KLUGEL
	20	T	(1710) Thomas SIMPSON (1863) Corrado SEGRE (1882) Waclav SIERPINSKI
	21	W	(1789) Augustin Louis CAUCHY
	22	T	(1647) Denis PAPIN
	23	F	(1683) Giovanni POLENI (1829) Moritz Benedikt CANTOR
	24	S	(1561) Bartholomeo PITISCUS (1942) Karen Keskulla UHLENBECK
	25	S	(1561) Philip van LANSBERGE (1844) Thomas MUIR
35	26	M	(1728) Johann Heinrich LAMBERT (1875) Giuseppe VITALI
	27	T	(1858) Giuseppe PEANO
	28	W	(1796) Irenee Jules BIENAYME` \\ \hline & 29 & T & (1904) Leonard ROTH \\ \hline & 30 & F & \begin{tabular}{l} (1856) Carle David Tolme` RUNGE

\hline \& 31 \& S \& (1821) Hermann Ludwig Ferdinand von HELMHOLTZ

\hline
\end{tabular}

21 ${ }^{\circ}$ USAMO (1992) - 3

For a nonempty set S of integers let $\sigma(S)$ the sum of the elements of \boldsymbol{S}. Suppose that $A=\left\{a_{1}, a_{2}, \cdots, a_{10}\right\} \quad$ is a set of positie integers with $a_{1}<a_{2}<\cdots<a_{11}$ and that, for each positive integer $n \leq 1500$, there is a subset \boldsymbol{S} of \boldsymbol{A} for which $\sigma(S)=n$. What is the smallest possible value of a_{10} ?

Did you know that 87.166253% of all statistics claim a precision of results that is not justified by the method employed?

Pi goes on and on and on...
And e is just as cursed.
I wonder: Which is larger
When they digits are reversed?

If you disregard the very simplest cases, there is in all the mathemathics not a single infinite series whose sum has been rigorously determined. In other words, the most important part of mathematics stand without a foundation.

Niels ABEL
As for everything else, so for mathematical theory: beauty can be perceived but not explained.

Arthur CAYLEY
I consider that I understand an equation when I can predict the properties of its solutions, without actually solving it.

Paul DIRAC
And perhaps, posterity will thank me for having shown that the ancients did not known everything.

Pierre FERMAT
Who would not rather have the fame of Archimedes than that of his conqueror Marcellus?

William HAMILTON

Rudi Mathematici

September

\begin{tabular}{|c|c|c|c|}
\hline 3 \& 1 \& S \& \begin{tabular}{l}
(1659) Joseph SAURIN \\
(1835) William Stankey JEVONS
\end{tabular} \\
\hline \multirow[t]{7}{*}{36} \& 2 \& M \& \begin{tabular}{l}
(1878) Mauriche Rene` FRECHET \\
(1923) Rene THOM
\end{tabular} \\
\hline \& 3 \& T \& \begin{tabular}{l}
(1814) James Joseph SYLVESTER \\
(1884) Solomon LEFSCHETZ \\
(1908) Lev Semenovich PONTRYAGIN
\end{tabular} \\
\hline \& 4 \& W \& (1809) Luigi Federico MENABREA \\
\hline \& 5 \& T \& (1667) Giovanni Girolamo SACCHERI (1725) Jean Etienne MONTUCLA \\
\hline \& 6 \& F \& \begin{tabular}{l}
(1859) Boris Jakovlevich BUKREEV \\
(1863) Dimitri Aleksandrovich GRAVE
\end{tabular} \\
\hline \& 7 \& S \& (1707) George Louis Leclerc comte de BUFFON (1955) Efim ZELMANOV \\
\hline \& 8 \& S \& (1584) Gregorius SAINT-VINCENT (1588) Marin MERSENNE \\
\hline \multirow[t]{7}{*}{3} \& 9 \& M \& (1860) Frank MORLEY \\
\hline \& 10 \& T \& (1839) Charles Sanders PEIRCE \\
\hline \& 11 \& W \& (1623) Stefano degli ANGELI (1877) sir James Hopwood JEANS \\
\hline \& 12 \& T \& (1891) Antoine Andre` Louis REYNAUD (1900) Haskell Brooks CURRY \\
\hline \& 13 \& F \& \begin{tabular}{l}
(1873) Constantin CARATHEODORY \\
(1885) Wilhelm Johann Eugen BLASCHKE
\end{tabular} \\
\hline \& 14 \& S \& \begin{tabular}{l}
(1858) Henry Burchard FINE \\
(1891) Ivan Matveevich VINOGRADOV
\end{tabular} \\
\hline \& 15 \& S \& (973) Abu Arrayhan Muhammad ibn Ahmad AL’BIRUNI (1886) Paul Pierre LEVY \\
\hline \multirow[t]{7}{*}{38} \& 16 \& M \& \begin{tabular}{l}
(1494) Francisco MAUROLICO \\
(1736) Johann Nikolaus TETENS
\end{tabular} \\
\hline \& 17 \& T \& (1743) Marie Jean Antoine Nicolas de Caritat de CONDORCET (1826) Georg Friedrich Bernhard RIEMANN \\
\hline \& 18 \& W \& (1752) Adrien Marie LEGENDRE \\
\hline \& 19 \& T \& (1749) Jean Baptiste DELAMBRE \\
\hline \& 20 \& F \& (1842) Alexander Wilhelm von BRILL (1861) Frank Nelson COLE \\
\hline \& 21 \& S \& (1899) Juliusz Pawel SCHAUDER \\
\hline \& 22 \& S \& (1765) Paolo RUFFINI
(1769) Louis PUISSANT
(1803) Jaques Charles Francois STURM \\
\hline \multirow[t]{7}{*}{39} \& 23 \& M \& (1768) William WALLACE (1900) David van DANTZIG \\
\hline \& 24 \& T \& \begin{tabular}{l}
(1501) Girolamo CARDANO \\
(1625) Johan DE WITT \\
(1801) Michail Vasilevich OSTROGRADSKI
\end{tabular} \\
\hline \& 25 \& W \& \begin{tabular}{l}
(1819) George SALMON \\
(1888) Stefan MAZURKIEWICZ
\end{tabular} \\
\hline \& 26 \& T \& \begin{tabular}{l}
(1688) Willem Jakob `s GRAVESANDE \\
(1854) Percy Alexander MACMAHON \\
(1891) Hans REICHENBACH
\end{tabular} \\
\hline \& 27 \& F \& \begin{tabular}{l}
(1855) Paul Emile APPEL \\
(1876) Earle Raymond HEDRICK \\
(1919) James Hardy WILKINSON
\end{tabular} \\
\hline \& 28 \& S \& \begin{tabular}{l}
(1698) Pierre Louis Moreau de MAUPERTUIS \\
(1761) Ferdinand Francois Desire` Budan de BOISLAURENT \\
(1873) Julian Lowell COOLIDGE
\end{tabular} \\
\hline \& 29 \& S \& (1561) Adriaan van ROOMEN (1812) Adolph GOPEL \\
\hline 40 \& 30 \& M \& \begin{tabular}{l}
(1775) Robert ADRAIN \\
(1829) Joseph WOLSTENHOLME \\
(1883) Ernst HELLINGER
\end{tabular} \\
\hline
\end{tabular}

21° USAMO (1992) - 4

Chords $\overline{A A^{\prime}}, \overline{B B^{\prime}}, \overline{C C^{\prime}}$ meet at an interior point \boldsymbol{P} but are not contained in a plane. The sphere through A, B, C, P is tangent to the sphere through $A^{\prime}, B^{\prime}, C^{\prime}, P$. Prove that $\overline{A A^{\prime}}=\overline{B B^{\prime}}=\overline{C C^{\prime}}$

Studies have shown that the leading cause of death is life.

In Arctic and Tropical Climes,
The Integers, additions and times,
Taken $(\bmod p)$ will yeld,
A full finite field,
As p ranges over the primes.

The unproved postulates with which we start are purely arbitrary. They must be consistent, but they had better lead to something interesting.

Julian COOLIDGE
We may as well cut out the group theory. That is a subject that will never be of any use in science.

James JEANS
It is clear that Economics, if it is to be a science at all, must be a mathematical science.

William JEVONS
If it's just turning the crank is algebra, but if it's got an idea in it, it's topology.

Solomon LEFSCHETZ

The pragmatist knows that doubt is an art wich has to be acquired with difficulty.

Charles PEIRCE
The early study of Euclid make me a hater of geometry.

James SYLVESTER
I believe that proving is not a natural activity for mathematicians.

Rene` THOM Algebra is rich in structure but weak in meaning. Rene` THOM

Rudi Mathematici

October

40		T	(1671) Luigi Guido GRANDI (1898) Bela KEREKJARTO` \\ \hline & 2 & W & \begin{tabular}{l} (1825) John James WALKER \\ (1908) Arthur ERDELYI \end{tabular} \\ \hline & 3 & T & (1944) Pierre Rene` DELIGNE
	4	F	(1759) Louis Francois Antoine ARBOGAST (1797) Jerome SAVARY
	5	S	(1732) Nevil MASKELYNE (1781) Bernhard Placidus Johann Nepomuk BOLZANO (1861) Thomas Little HEATH
	6	S	(1552) Matteo RICCI (1831) Julius Wilhelm Richard DEDEKIND (1908) Sergei Lvovich SOBOLEV
	7	M	(1885) Niels BOHR
	8	T	(1908) Hans Arnold HEILBRONN
	9	W	(1581) Claude Gaspard BACHET de Meziriac (1704) Johann Andrea von SEGNER (1873) Karl SCHWARTZSCHILD
	10	T	(1861) Heinrich Friedrich Karl Ludwig BURKHARDT
	11	F	(1675) Samuel CLARKE (1777) Barnabe BRISSON (1885) Alfred HAAR (1910) Cahit ARF
	12	S	(1860) Elmer SPERRY
	13	S	(1890) Georg FEIGL (1893) Kurt Werner Friedrich REIDEMEISTER (1932) John Griggs THOMSON
42	14	M	(1687) Robert SIMSON (1801) Joseph Antoine Ferdinand PLATEAU (1868) Alessandro PADOA
	15	T	(1608) Evangelista TORRICELLI (1735) Jesse RAMSDEN (1776) Peter BARLOW
	16	W	(1879) Philip Edward Bertrand JOURDAIN
	17	T	(1759) Jacob (II) BERNOULLI (1888) Paul Isaac BERNAYS
	18	F	(1741) John WILSON
	19	S	(1903) Jean Frederic Auguste DELSARTE (1910) Subrahmanyan CHANDRASEKHAR
	20	S	(1632) Sir Cristopher WREN (1863) William Henry YOUNG (1865) Aleksandr Petrovich KOTELNIKOV
43	21	M	(1677) Nicolaus (I) BERNOULLI (1823) Enrico BETTI (1855) Giovan Battista GUCCIA (1893) William LEonard FERRAR
	22	T	(1587) Joachim JUNGIUS (1895) Rolf Herman NEVANLINNA (1907) Sarvadaman CHOWLA
	23	W	(1865) Piers BOHL
	24	T	(1804) Wilhelm Eduard WEBER (1873) Edmund Taylor WITTAKER
	25	F	(1811) Evariste GALOIS
	26	S	(1849) Ferdinand Georg FROBENIUS (1857) Charles Max MASON (1911) Shiing-Shen CHERN
	27	S	(1678) Pierre Remond de MONTMORT (1856) Ernest William HOBSON
44	28	M	(1804) Pierre Francois VERHULST
	29	T	(1925) Klaus ROTH
	30	W	(1906) Andrej Nikolaevich TIKHONOV
	31	T	(1815) Karl Theodor Wilhelm WEIERSTRASS

22° USAMO (1993) - 1

For each integer $n \geq 2$ determine (with proof) which of the two positive real numbers \boldsymbol{a} and \boldsymbol{b} satisfying

$$
\left\{\begin{array}{c}
a^{n}=a+1 \\
b^{2 n}=b+3 a
\end{array}\right.
$$

is larger.
A mathematician is a person who says that, when 3 people are supposed to be in a room but 5 came out, 2 have to go in so the room gets empty...

A graduate student at Trinity
Computed the square of infinity
But it gave him the fidgets
To put down the digits
So he dropped math and took up divinity

An expert is a man who has made all the mistakes which can be made in a very narrow field.

Niels BOHR
How wonderful that we have met with a paradox. Now we have some hope of making progress.

Niels BOHR
As professor in the Polytechnic School in Zürich I found myself for the first time obliged to lecture upon the elements of the differential calculus and felt more keenly than ever before the lack of a really scientific foundation for arithmetic.

Richar DEDEKIND

Unfortunately what is little recognized is that the most worthwhile scientific books are those in which the author clearly indicates what he does not know; for an author most hurts his readers by concealing difficulties.

Evariste GALOIS
Newton is, of course, the greatest of all Cambridge professors; he also happens to be the greatest disaster that every befell not merely Cambridge, but British mathematical science as a whole.

Leonard ROTH
It is true that a mathematician that is not also something of a poet will never be a perfect mathematician.

Karl WEIERSTRASS

November

22° USAMO (1993) - 2
 Let $\boldsymbol{A B C D}$ be a convex quadrilateral such that diagonals $\boldsymbol{A C}$ and $\boldsymbol{B D}$ intersect at right angles, and let \boldsymbol{E} be their intersection. Prove thatthe reflections of \boldsymbol{E} across $\boldsymbol{A B}, \boldsymbol{B C}, \boldsymbol{C D}, \boldsymbol{D A}$ are concyclic.
 "To speak algebrically, Mr. M is execrable, but Mr. G. is ($x+1$)ecrable"

Edgar Allan POE

A conjecture both deep and profound
Is wether the circle is round.
In a paper of Erdös written in Kurdish
A counterexample is found.

Algebra is generous; she often gives more than is asked for.

Jean d'ALEMBERT
Mathematics is the only instructional material that can be presented in an entirely undogmatic way.

Max DEHN
A scientist can hardly meet with anything more undesirable than to have the foundations give way just as the work is finished. I was put in this position by a letter from Mr. Bertrand Russell when the work was nearly through the press.

Gottlob FREGE
The history of astronomy is the history of receding horizons.

Edwin HUBBLE
That sometimes clear and something vague stuff which is mathematics...

Imre LAKATOS
Being a language, mathematics may be used not only to inform but also, among other things, to seduce.

Benoit MANDELBROT
My work has always tried to unite the true with the beautiful and when I had to choose one or the other, I usually choose the beautiful.

Hermann WEYL
A professor is one who can speak on any subject. For precisely fifty minutes.

Norbert WIENER

Rudi Mathematici

December

48	1	D	(1792) Nikolay Yvanovich LOBACHEVSKY
49	2	M	(1831) Paul David Gustav DU BOIS-RAYMOND (1901) George Frederick James TEMPLE
	3	T	(1903) Sidney GOLDSTEIN (1924) John BACKUS
	4	W	(1795) Thomas CARLYLE
	5	T	(1868) Arnold Johannes Wilhelm SOMMERFELD (1901) Werner Karl HEISENBERG
		F	(1682) Giulio Carlo FAGNANO dei Toschi
	7	S	(1647) Giovanni CEVA (1823) Leopold KRONECKER (1830) Antonio Luigi Gaudenzio Giuseppe CREMONA
	8	S	(1508) Regnier GEMMA FRISIUS (1865) Jaques Salomon HADAMARD (1919) Julia Bowman ROBINSON
50	9	M	(1883) Nikolai Nikolaievich LUZIN (1906) Grace Brewster MURRAY HOPPER (1917) Sergei Vasilovich FOMIN
	10	T	(1804) Karl Gustav Jacob JACOBI (1815) Augusta Ada KING Countess of LOVELACE
	11	W	(1882) Max BORN
	12	T	(1832) Peter Ludwig Mejdell SYLOW
	13	F	(1724) Franz Ulrich Theodosius AEPINUS (1887) George POLYA
	14	S	(1546) Tycho BRAHE
	15	S	(1802) Janos BOLYAI
51	16	M	(1804) Wiktor Yakovievich BUNYAKOWSKY
	17	T	(1706) Gabrielle Emile Le Tonnelier de Breteuil du CHATELET (1835) Felice CASORATI (1842) Marius Sophus LIE (1900) Dame Mary Lucy CARTWRIGHT
	18	W	(1917) Roger LYNDON
	19	T	(1783) Charles Julien BRIANCHON (1854) Marcel Louis BRILLOUIN
	20	F	(1494) Oronce FINE (1648) Tommaso CEVA (1875) Francesco Paolo CANTELLI
			(1878) Jan LUKASIEVIKZ (1932) John Robert RINGROSE
	22	S	(1824) Francesco BRIOSCHI (1859) Otto Ludwig HOLDER (1877) Tommaso BOGGIO (1887) Srinivasa Aiyangar RAMANUJAN
52	23	M	(1872) Georgii Yurii PFEIFFER
	24	T	(1822) Charles HERMITE (1868) Emmanuel LASKER
	25	W	(1642) Isaac NEWTON (1900) Antoni ZYGMUND
	26	T	(1780) Mary Fairfax Greig SOMERVILLE (1791) Charles BABBAGE
	27	F	(1571) Johannes KEPLER (1654) Jacob (Jacques) BERNOULLI
	28	S	(1808) Athanase Louis Victoire DUPRE (1882) Arthur Stanley EDDINGTON (1903) John von NEUMANN
	29	S	(1856) Thomas Jan STIELTJES
1	30	M	(1897) Stanislaw SAKS
			(1872) Volodymyr LEVIYTSKY (1896) Carl Ludwig SIEGEL (1952) Vaughan Frederick Randall JONES

22 ${ }^{\circ}$ USAMO (1993) - 4

Let \boldsymbol{a} and \boldsymbol{b} be odd positive integers. Define the sequence $\left(f_{n}\right)$ by putting $f_{1}=a, f_{2}=b$ and by letting f_{n} for $n \geq 3$ be the greatest odd divisor of $f_{n-1}+f_{n-2}$. Show that f_{n} is constant for n sufficiently large and determine the eventual value as a function of \boldsymbol{a} and \boldsymbol{b}.

Q: What's an Abelian group under addition, is closed, associative, distributive, and bears a curse?

A: The ring of the Nibelung.
Q: Why did the mathematician name his dog "Cauchy"?

A: Because he left a residue at every pole.
The Moebius strip is a pain
When you cut it again and again
But if you should wedge
A large disk 'round the edge
Then you just get a projective plane.

Errors using inadequate data are much less than those using no data at all.

Charles BABBAGE
We have found a strange footprint on the shores of the unknown. We have devised profound theories, one after another, to account for its origins. At last, we have succeeded in reconstructing the creature that made the footprint. And lo! It is our own.

Arthur EDDINGTON

The shortest path between two truths in the real domain passes through the complex domain.

Jaques HADAMARD
An expert is someone who knows some of the worst mistakes that can be made in his subject, and how to avoid them.

Werner HEISENBERG
Abel has left mathematician enough to keep them busy for 500 years.

Charles HERMITE

Mathematics consists of proving the most obvious thing in the least obvious manner.

George POLYA

